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We report high-resolution local-temperature measurements in the upper boundary
layer of turbulent Rayleigh–Bénard (RB) convection with variable Rayleigh number
Ra and aspect ratio Γ . The primary purpose of the work is to create a comprehensive
data set of temperature profiles against which various phenomenological theories
and numerical simulations can be tested. We performed two series of measurements
for air (Pr =0.7) in a cylindrical container, which cover a range from Ra ≈ 109 to
Ra ≈ 1012 and from Γ ≈ 1 to Γ ≈ 10. In the first series Γ was varied while the
temperature difference was kept constant, whereas in the second series the aspect
ratio was set to its lowest possible value, Γ = 1.13, and Ra was varied by changing
the temperature difference. We present the profiles of the mean temperature, root-
mean-square (r.m.s.) temperature fluctuation, skewness and kurtosis as functions of
the vertical distance z from the cooling plate. Outside the (very short) linear part
of the thermal boundary layer the non-dimensional mean temperature Θ is found
to scale as Θ(z) ∼ zα , the exponent α ≈ 0.5 depending only weakly on Ra and Γ .
This result supports neither Prandtl’s one-third law nor a logarithmic scaling law for
the mean temperature. The r.m.s. temperature fluctuation σ is found to decay with
increasing distance from the cooling plate according to σ (z) ∼ zβ , where the value
of β is in the range −0.30 >β > −0.42 and depends on both Ra and Γ . Priestley’s
β = −1/3 law is consistent with this finding but cannot explain the variation in the
scaling exponent. In addition to profiles we also present and discuss boundary-layer
thicknesses, Nusselt numbers and their scaling with Ra and Γ .

1. Introduction
Turbulent thermal convection is the most frequently occurring type of fluid flow in

Nature. In spite of its widespread occurrence, the local properties of the temperature
and velocity fields in turbulent thermal convection are still poorly understood. Even
for the idealized case of Rayleigh–Bénard (RB) convection – the flow in a horizontal
fluid layer heated from below and cooled from above – our knowledge is modest
in many respects. Referring to temperature and velocity profiles in RB convection,
Townsend (1958) wrote almost fifty years ago ‘that’ the experimental material is very
meagre by comparison with our knowledge of the turbulent motion in shear flow’. It
is astonishing that this statement is still true today. The purpose of the present work is
to bridge this gap by performing local temperature measurements inside the thermal
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boundary layers of turbulent RB convection that have a higher spatial resolution
than in previous experimental investigations.

Rayleigh–Bénard convection is characterized by three control parameters, namely
the Rayleigh number Ra , the Prandtl number Pr and the aspect ratio Γ . The main
parameter is the Rayleigh number,

Ra =
γ g�ϑH 3

νκ
, (1.1)

which describes the ratio of the buoyancy force driving the flow and the viscous and
thermal dissipation damping it. In this equation, γ denotes the thermal expansion
coefficient, the acceleration due to gravity is represented by g, the temperature
difference between the heated bottom plate and the cooled top plate is written as
�ϑ and the distance between the plates is H . Furthermore ν and κ stand for the
kinematic viscosity and the thermal diffusivity, respectively. The material properties
of the fluid are characterized by the Prandtl number

Pr =
ν

κ
, (1.2)

which represents the ratio of the thermal and the viscous time scales. If the fluid
were laterally unbounded, Ra and Pr would be the only control parameters. Most
experiments, however, are performed in cylinders whose inner diameter D defines the
third parameter, the aspect ratio

Γ =
D

H
. (1.3)

A requirement of fundamental importance in RB convection (Siggia 1994) is
to predict and measure the convective heat flux q̇k and the mean velocity U , as
well as their dependence on the parameter set. Usually this is written in the form
Nu(Ra, Pr, Γ ) and Re(Ra, Pr, Γ ), where the dimensionless Nusselt number Nu and
Reynolds number Re are defined via

Nu =
q̇c

q̇d

, Re =
UH

ν
. (1.4)

Here q̇c is the convective heat flux, q̇d is the diffusive heat flux and U is the mean
velocity.

The significant progress in our understanding of these scaling laws at very high
Rayleigh numbers (Niemela et al. 2000; Chavanne et al. 2001; Grossmann & Lohse
2000; Verzicco & Camussi 2003) is in contrast with the conspicuous lack of reliable
experimental data on the profiles of temperature and velocity for Ra > 1011.
Despite a considerable number of temperature-profile measurements in the past,
the experimental results scatter very strongly. While in early measurements at low
Rayleigh numbers a power-law scaling of the temperature in the boundary layer was
observed (Prandtl 1932) found ϑ ∼ z−1/3 and Malkus (1954b) found ϑ ∼ z−1), more
recent measurements support a logarithmic dependence (see Landau & Lifschitz
(1991), who found ϑ ∼ ln(z) and Chilla et al. (1993), who found ϑ ∼

∫
exp(−z3) dz).

All these theories could be evaluated experimentally only in a limited range of Ra
and z. A similar situation holds in relation to the r.m.s. temperature fluctuation σ ,
where e.g. regimes of σ ∼ z−1/3 (Priestley 1954) or σ ∼ ln(z) (Fernandes & Adrian
2002) have been observed.

Convective heat transfer was first investigated by Prandtl (1932) and Priestley
(1954). They considered free convective heat transfer from a single hot plate to
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the fluid above it. Prandtl predicted that it depends only on a thin boundary layer
attached to the heated plate and is independent of the thickness of the fluid layer
above. Then the wall-normal profile of the (potential) mean temperature Θp in this
layer can be described by a simple power law,

Θp(z) ∼ zα, α = − 1
3
. (1.5)

Furthermore Priestley showed that, in a region sufficiently far away from the plate
to avoid near-wall effects, the variation in the r.m.s. temperature fluctuation σ scales
with the wall-normal distance z from the plate as

σ ∼ zβ, β = − 1
3
. (1.6)

His theoretical considerations based on similarity and dimensional analysis were
confirmed by the atmospheric measurements of several authors (Best 1935; Rider &
Robinson 1951; Ramdas 1953).

A further theory by Malkus for two parallel plates (Malkus 1954a, b) was based
on a nearly isothermal core in the RB cell and two boundary layers with a steep
temperature gradient close to the plates. It leads to a power-law behaviour of the
mean temperature gradient Θp(z), (1.5), but the exponent α is determined to be −1.
The same exponent was predicted by Kraichnan’s analysis (Kraichnan 1962), but he
found α = −1/3 further into the interior of the cell.

In order to check these hypotheses, a considerable number of high-Rayleigh-number
experiments in air (Thomas & Townsend 1957; Townsend 1958; Deardorff & Willis
1967; Fitzjarrald 1977) and water (Chu & Goldstein 1973) were performed. Townsend
investigated turbulent convection in an open-topped box with a uniformly heated
bottom plate and a sidewall 56 cm in height. According to Prandtl’s and Priestley’s
theory the temperature profiles Θp(z) measured at the heating plate for different Ra
are represented by a power law, (1.5), but Townsend’s exponent varied in a wide range
between −0.3 >α > −1.5. The r.m.s. temperature fluctuation could also be described
by a power law, cf. (1.6), with a scaling exponent β = −0.6 which considerably differs
from the predicted value. Chu & Goldstein (1973) also observed in a water cell heated
from below and cooled from above that the temperature Θp scaled with z as in (1.5)
but, depending on the Ra number (2.7 × 105 <Ra < 1.0 × 108), the exponent was
determined as −1 > α > −3. Fitzjarrald measured the temperature and the velocity
field in a large cavity filled with air at larger Rayleigh numbers up to Ra = 7 × 109

but he did not analyse the temperature profile near the bounding walls.
Belmonte, Tilgner & Libchbaer (1993, 1994) and Tilgner, Belmonte & Libchbaer

(1993) achieved higher Rayleigh numbers in RB cells filled with water (up to Ra = 109)
or with compressed SF6 (up to Ra = 1011). They measured the temperature profile in
the wall-normal direction and represented it in a normalized form as

Θ(z) =
ϑ̄(z) − ϑ̄CP

ϑ̄HP − ϑ̄CP

, (1.7)

where ϑ̄(z) is the mean temperature at the position z and ϑ̄HP and ϑ̄CP are the
temperatures of the heating and the cooling plate, respectively. For Ra < 1011 they
approximated the temperature profile near the wall by a linear function, (1.5) with
α = 1, assuming a laminar boundary layer at the heating and at the cooling plate.
The r.m.s. temperature-fluctuation profile σ (z) rose steeply from the surface of the
bounding wall up to a maximum which coincided with the intersection point of the
gradient of the temperature profile at z = 0 and the temperature in the interior of
the cell. They defined this point as the edge of the boundary layer. Furthermore they
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analysed the decreasing part of the r.m.s. temperature fluctuation and determined the
exponent, (1.6), as β = −0.80 (water) and β = −0.72 (SF6). Because of the large size
of the sensor relative to the thickness of the boundary layer the spatial resolution of
the measurements at large Rayleigh number was limited.

Chilla et al. (1993) analysed the profile of the temperature gradient ∂Θ/∂z and
the r.m.s. temperature fluctuation σ in a large-aspect-ratio cell filled with water
(Ra < 108). They found a logarithmic relation, given by

∂Θ(z)

∂z
∼ exp

(
zα

B

)
, α = −3. (1.8)

The profile of the r.m.s. temperature fluctuation σ (z) scaled in a logarithmic manner
outside the boundary layer, but the coefficients were not given in the paper.

Lui & Xia (1998) reported measurements of the mean-temperature profile in RB
convection in a cylindrical water cell. They investigated the scaling properties of the
mean-temperature profile and its dependence on Ra in the range 3.4 × 107 < Ra <

4.7 × 1010. In their experiment the temperature profiles at different horizontal positions
along the large-scale circulation were found to be self-similar when Ra was maintained
constant, whereas those measured at different Ra values did not have a universal form.
Furthermore they found that the scaling exponent of the boundary-layer thickness δΘ

varied with Ra depending on the horizontal position.
Fernandes & Adrian (2002) examined the properties of the r.m.s. temperature

fluctuation σ and the r.m.s. velocity fluctuation σv in a cubic water cell (Γ ≈ 10,
Ra = 107–109). The aim of this work was to investigate two versions of the mixing-
layer theory of Castaing et al. (1989), the so-called λ-I and λ-II theories. In the λ-I
theory, the plumes from the plates move through the core without being influenced.
Then σ should scale according to (1.6) with β = −1/2. Otherwise, in the λ-II theory,
the plumes are broken down and mixed thoroughly by the turbulent motion in the
core and yield a logarithmic scaling of the r.m.s. temperature fluctuation:

σ ∼ ln(z). (1.9)

The experimental results tended to support the second theory, but there were some
uncertainties which prevented a final statement.

Another issue to which we intended our experiments to contribute is the unresolved
question about the transition of the heat transfer in RB convection to an ‘ultimate
regime’. This state of the turbulent motion of a fluid was first predicted by Kraichnan
(1962) as a regime where the heat transport in the RB cell no longer depends on
the fluid properties because of the onset of turbulent mixing in the boundary layer.
Regarding the point at which this transition takes place, there are a number of differing
theoretical predictions (Kraichnan 1962; Landau & Lifschitz 1991; Grossmann &
Lohse 2000) and experimental observations (Castaing et al. 1989; Chavanne et al.
1997; Niemela et al. 2000; Chavanne et al. 2001; Niemela & Sreenivasan 2003).
Evidence of the so-called ultimate regime in RB convection is still missing. While
Niemela found a constant exponent η = 0.309 over the range of investigated Ra
between 106 < Ra < 1017, Chavanne’s group observed a transition of the exponent
from η = 2/7 to a higher value at Ra ≈ 1011. Owing to the complicated experimental
conditions in low-temperature helium and the small thickness of the boundary-layer,
measurements of temperature and velocity profiles are not possible. Therefore the
transition of the boundary layer from laminar to turbulent could not be demonstrated.

The work presented here was motivated by this lack of knowledge about the
temperature field in highly turbulent RB convection. In the experimental facility
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Figure 1. The large-scale RB facility (the ‘Barrel of Ilmenau’).

which we describe in § 2.1, Rayleigh numbers up to Ra = 1012 can be achieved. Its
large size compared with the small size of our sensors permits temperature and velocity
measurements with unprecedented spatial resolution. These data can help us to under-
stand the mechanism of heat transport in highly turbulent convection in more detail.
In particular, we address the following two questions.

(i) How do the temperature profile and the heat transport depend on the aspect
ratio and the temperature difference of the RB cell?

(ii) Does a variation in the structure of the boundary layer exist at very high
Rayleigh numbers indicating a transition towards the so-called ultimate regime?

The paper is divided as follows. In § 2 we describe the experimental facility
and the method used for temperature measurements. Section 3 contains results for
variable aspect ratio, mainly relating to the first question. In § 4 we investigate the
temperature field at Γ = 1.1 in the range 1011 <Ra < 1012; in this section we focus
our special attention onto the second question. In the appendix we discuss heat-flow
measurements for both series of experiments.

2. Experimental method and procedures
2.1. Experimental setup

We used air as the working fluid and performed our experiments in a large-scale
facility, which is shown in figure 1. It consists of a closed cylindrical box (F, K)
with an inner diameter D = 7.15 m, a heating plate (C, D) at the bottom and a
free-hanging cooling plate (A) above. The distance between the heating and cooling
plates is continuously adjustable between H = 0.063 m and H = 6.30 m. The plates
are aligned perpendicularly to the vector of the gravitational acceleration, with a
deviation smaller than 0.1◦. In order to force the convective flow into a certain
direction the cooling plate can be inclined to an angle of upto approximately 5◦, but
we did not make use of this possibility in the experiments reported here. The sidewall
is covered with an active compensation heating system (H, I), which is necessary to
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suppress lateral heat losses to the environment. The box is filled with ambient air
(about 250 m3 for Γ = 1.13). Two windows each with diameter 1.00 m and shielded
with a separate compensation heating segment can be used for global observation
and access for maintenance.

Because our interest was focused on the investigation of the temperature and the
velocity field in the vicinity of the cooling plate, we had to guarantee very precise
boundary conditions there. For reasons of low weight and good homogeneity of
temperature we chose a water-cooled aluminium plate, made of 16 separate segments
each covering a sector of angle 22.5◦. All segments consist of a lower blank smooth
aluminium plate with thickness 6mm, followed by a cooling-coil system with 25 mm
tubes and a second aluminium plate on top. The segments are mounted on a steel
rack with total weight approximately 5 tons, which hangs at three hoists M in a steel
construction L.

Each segment of the cooling plate is supplied with cooled water by a central cooling
system with maximum power 13 kW. A PID controller in combination with a 1 m3

buffer tank in the cooling circuit guarantees a very stable temperature, which can be
adjusted between 15◦C and 25◦C. The accuracy is better than ±0.1 ◦C. In order to
achieve intense lateral heat transport and a homogeneous temperature distribution at
the plate surface, the highest possible flow rate, approximately 10 m3 h−1 was chosen
and each segment was supplied separately.

The surface temperature of the cooling plate is continuously measured and stored
by 19 high-accuracy PT-100 sensors, mounted in holes drilled from the upper site of
the plate to about 0.5 mm from its lower surface. Nine sensors are arranged at the
ninth segment opposite to the lower maintenance window in a line from the centre
of the plate to its outer edge. They give information about the radial distribution of
temperature. The other sensors are distributed regularly over the remaining segments.
The mean temperature of the cooling plate, ϑ̄CP, which we use for the determination
of Ra and for the presentation of non-dimensional temperature profiles is obtained
as an average over every second segment.

The construction of the heating system is similar to that of conventional residential
underfloor heating. A thermal insulation of polyurethane (E) with thickness 0.3 m
and thermal conductivity 0.027 Wm−1 K−1 reduces the fraction of the heating power
flowing from the box into the ground. Written as the ratio of the heat flow through
the bottom insulation, Q̇G, and the convective heat flow into the fluid Q̇K , we have
Q̇G/Q̇K = 0.04 for the maximum adjustable temperature difference �ϑmax = 60 K
between the plates.

Electrical heating wires (D) are mounted in a spiral form at a metal gauze and
fixed at the surface of the insulation layer. Both metal gauze and heating wires
are poured into a floating floor screed (C) of thickness 5 cm. Its viscosity during
manufacture is very small, so a truly plane and horizontally aligned surface is
guaranteed. Temperature sensors in the same arrangement as in the cooling plate
were embedded 3 mm deep and finally the surface was coated with tinfoil to reduce
radiative heat transfer.

The heating system is divided into three concentric sectors with equal areas. The
surface temperature of every sector is separately controlled by a PID controller. A
mean surface temperature ϑ̄HP between 80 ◦C and 20 ◦C with an accuracy better
than ±0.05 K can be adjusted. Because of the nearly constant heat flux from the
heating wires and the poor lateral heat transport in the floor screed, the temperature
homogeneity of the heating plate is not as good as that of the cooling plate. Areas
with higher convective heat flux, e.g. in the centre, or at the edge of the plate, where
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Figure 2. Radial uniformity of the thermal boundary conditions: the deviation of the
non-dimensional surface temperature of the cooling plate (circles) and the heating plate
(crosses) from their mean values. The data given here represent the worst case, where the
heating plate is at its maximum temperature, ϑ̄HP =82.5 ◦C and the cooling plate is at
its minimum temperature, ϑ̄CP = 18.6 ◦C. The actual experiments were performed at lower
temperature differences.

an enhanced heat loss into the ground exist, are colder. Areas with reduced heat flux
assume a higher temperature. The different levels of temperature homogeneity of the
heating and cooling plate are illustrated in figure 2.

In this figure we plot the radial temperature distribution for the ninth segment of
the cooling plate, as well as for the facing side of the heating plate, at the maximum
Rayleigh number, Ra = 1012. The temperatures in figure 2 are normalized to the
temperature difference between the plates according to

ΘCP =
ϑCP(x) − ϑCP(0)

ϑ̄HP − ϑ̄CP

, (2.1)

ΘHP =
ϑHP(x) − ϑHP(0)

ϑ̄HP − ϑ̄CP

, (2.2)

where ϑCP(0) and ϑHP(0) are the temperatures at the plate centre, x = 0. As can be
seen the temperature is distributed very homogeneously over the cooling plate and
does not deviate by more than 2% (1.2 K). In comparison, the radial deviation of the
heating-plate temperature, particularly at its edge, exceeds this value by a factor 6.
In order to reduce the influence of the non-uniform bottom temperature on our local
measurements, the latter were conducted exclusively in the upper (cold) boundary
layer, where the thermal boundary conditions are well defined.

The sidewall of the experimental facility consists of an inner insulation layer 16 cm
thick followed by compensating heating elements and an outer insulation layer with
thickness 12 cm. The inner insulating wall is made of five rings of height 1.60 m, each
mounted on three 120 ◦ sections. They consist of an inner and an outer layer of a very
stable fibre-reinforced plastic (of thickness 1 cm) as well as an intermediate insulation
layer of polyurethane. The heat resistance Rth of this simple wall is of the order of
0.04 KW−1 and leads to a maximum heat loss Q̇W = 1.5 kW through the sidewall.
A compensation heating system (H, I) at the outer surface, covered with additional
thermal insulation and finished with an outer weather-resistant plastic board, reduces
this heat loss by a factor of about 20. In relation to the convective heat flux at
the maximum Rayleigh number (Ra =1012) the lateral heat loss amounts to less
than 1 %.
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Figure 3. Experimental parameters: schematic of the two-dimensional parameter space
(Ra, Γ ) of our experiment together with the parameters at which measurements were taken.
The full circles represent experiments at constant temperature difference and variable aspect
ratio (§ 3) whereas the empty circles represent experiments at constant aspect ratio and variable
temperature difference (§ 4). The horizontal extent of the parameter space accessible in the
experiment is given by the temperature difference �T = 60 K at maximum heating power and
the minimum temperature difference �T = 5 K. The upper limit of the aspect ratio is set by the
minimum height H = 0.07 m below which the deviation of the cooling plate from horizontality,
�H = 5 mm, renders the local Rayleigh number non-uniform.

To avoid computation of a Rayleigh number based on the non-uniform bottom
temperature, we define our experimental Ra as

Ra =
2αg(ϑ̄B − ϑ̄CP)H 3

νκ
, (2.3)

where ϑ̄B is the measured bulk temperature averaged over the time of the profile
measurement. All fluid properties are evaluated for this temperature.

In this configuration we were able to investigate thermal convection in a very
wide range of parameters, as shown in figure 3. By varying the aspect ratio and
the temperature difference between the heating and the cooling plate, the range
5 × 104 <Ra < 1012 is accessible. Keeping the aspect ratio constant and varying the
temperature difference only, the convective flow over approximately one decade in
Ra can be examined.

2.2. Temperature measurements

The temperature profiles presented here were measured along the central axis of the
experiment and our coordinate system is defined as shown in figure 1.

We used a glass-encapsulated microthermistor with a diameter of approximately
140 µm and 18 µm connecting wires. It was supported between the pins of a small
transistor case and mounted at the end of a brass tube of diameter 5 mm, as shown in
figure 4. Connected to a one-dimensional traverse system, it can be moved in steps of
10 µm along the z-axis. The smallest distance is defined by zmin = 70 µm, corresponding
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Figure 4. Measurement setup: Schematic of the temperature measurement performed
through window B (figure 1)

to one-half the sensor diameter. Its basic accuracy was improved by an additional
calibration and was better than ±0.1 K.

In order to prevent measurement errors by self-heating, a measurement current
lower than that normally used in commercial instruments is required. The thermal
dissipation rate of the thermistor is specified as εD = 0.045 mW K−1 in still air.
At a typical resistance of approximately RT h = 10 k� at 25 ◦C and a maximum
temperature error �T = 0.05K the current through the sensor must not exceed
IT h =

√
(εD�ϑ)/RT h = 10.6 µA.

Owing to the variation in the current caused by the temperature dependence of
the resistance, a lower current, IT h = 5 µA, was used in our experiments. The current
was supplied by a special resistance bridge with an internal DC-voltage source. The
bridge transforms the resistance of the thermistor into a voltage and amplifies it by
a factor 100. The output voltage of the bridge is in the range between −10 V and
+10 V and is measured using a computer-controlled system based on an HP3458. It
permits a maximum sampling rate of 333 s−1 with six-digit resolution. The measuring
instrument and the traverse system are controlled by the PC, where a LabVIEW
program is running. This arrangement permits temperature measurements in air with
negligible heating of the sensor, high accuracy and noise immunity as well as excellent
long-term stability.

We studied the temperature field at the cooling plate between z = 0.07 mm and
z = 150.07 mm. Measuring the temperature at 39 positions over a time span of
one hour for each position and with a sampling rate of 200 s−1, 39 time series of
720 000 temperature values were obtained. Systematic errors created for example
by environmental influences were excluded by a random selection of measurement
positions. Double measurements at eight points allowed us to estimate the statistical
relevance of the recorded data. Before a measurement with new parameters was
started, we waited at least 48 hours to achieve a steady state in the RB cell.

In addition to the regular profile measurements described above, one high-resolution
temperature profile at Ra = 7.7 × 1011 and Γ = 1.13 was obtained. We expanded the
number of data points from 39 to 77 positions and the measurement time at each
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Figure 5. Raw data: three examples of temperature time series taken at different distances
from the cooling plate for an experiment at Ra = 7.7 × 1011 and Γ = 1.13.

position from one to two hours. Particularly for the higher statistical moments, the
scatter of the calculated profiles could thereby be reduced in comparison with the
shorter measurements.

In total, we performed 20 regular series and one extended series of temperature-
profile measurements. With a duration of 48 hours per measurements for the regular
profiles and 192 hours per measurement for the extended profiles, not forgetting the
waiting times needed for the adjustment of thermal conditions, it took approximately
21 weeks for the reported measurements to be completed.

In order to demonstrate the high temporal resolution of the temperature measure-
ments, three examples of temperature time series at different z-positions are shown in
figure 5. The experimental parameters are adjusted to Γ =1.13 and Ra = 7.7 × 1011.
In the diagrams the normalized temperature

Θi(z) =
ϑi(z) − ϑ̄CP

ϑ̄B − ϑ̄CP

(2.4)

is plotted over a time interval of 15 s. The value Θ =0 corresponds to the temperature
of the cooling plate ϑ̄CP and the value Θ = 1 is the mean temperature halfway between
the heating and the cooling plate which is often referred to as the bulk temperature
ϑ̄B . The time series were sampled at a standard rate of 200 s−1 at three distances,
z = 0.1δΘ (0.3 mm); z =1.0δΘ (3 mm) and z = 10δΘ (30 mm); the thickness of the
thermal boundary layer δΘ is defined below. Good temporal resolution is visible
particularly in the lower windows, where the time scale is stretched.

At the smallest distance from the cooling plate, corresponding to the left-hand
plots in figure 5, the mean temperature Θ(z) is about 0.3. The fluctuations are very
small and uniformly distributed around the mean value. All data are presented and
analysed without any kind of filtering. The mean temperature at z = 1.0δΘ amounts
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to Θ(z) = 0.7. The fluctuations at this point are considerably larger but they are still
distributed uniformly around the mean. At a distance of z = 10δΘ , the normalized
mean temperature is close to the bulk temperature Θ(z) = 1.0 but with strong negative
spikes. In contrast with the position at the boundary layer, a number of positive spikes
with Θ(z) > 1.0 caused by hot plumes can be registered. However, the temperature of
the positive spikes in the complete time series of two hours did not exceed Θmax = 1.08,
indicating that thermals or plumes from the heating plate are mixed and cool down
very strongly during their upward travel.

From these time series the profiles of the normalized mean temperature Θ(z), the
standard deviation std(z) and the dimensionless r.m.s. temperature fluctuation σ (z)
normalized by the temperature difference between the bulk temperature ϑ̄B and the
temperature of the cooling plate ϑ̄CP were computed. Furthermore we analysed the
skewness s(z) and the kurtosis k(z).

We characterize the near-wall behaviour of our temperature profiles by defining
four length scales, namely δΘ = (dΘ/dz|z=0)

−1, δσ = {z : dσ/dz =0}, δs = {z : s(z) = 0}
and δk = {z : k(z) = 3}. The first quantity is the usually defined thickness of the
thermal boundary layer, based on the slope of the temperature profile at the wall.
Since our mean-temperature profiles show only a short linear part, we first fitted the
temperature in the range 0 < z < 2.07mm by the function Θ(z) = az2 + bz + c and
then computed δΘ = 1/b. The second boundary-layer thickness δσ is defined by the
point at which the temperature fluctuations reach their maximum. The quantities δs

and δk define the positions where the probability distribution of the temperature has
zero skewness and has the same kurtosis as a normal distribution, respectively.

Before proceeding to a discussion of the results we would like to emphasize that we
have not plotted our temperature data in terms of non-dimensional ‘wall variables’ (cf.
Townsend 1958). The introduction of such quantities requires an accurate knowledge
of the heat flux. Since our facility was not designed for high-accuracy Nusselt-number
measurements, the utilization of experimental heat-flux data would introduce an
additional source of uncertainty and reduce the reliability of our profiles. Moreover,
the heat flux is spatially nonuniform for most high-Rayleigh-number experiments,
including ours. Under such circumstances the global heat flux may not be a reliable
quantity for non-dimensionalization.

3. Results for variable aspect ratio
In the first series of measurements we fixed the temperature difference and studied

the temperature field for 10 different heights of the cooling plate. Small deviations
of the temperature of the heating plate and of the bulk temperature (table 1)
are caused by the averaging of the inhomogeneous temperature distribution at the
surface of the heating plate. As shown in figure 3, this parameter set corresponds
to a movement along the downward sloping curve Γ = const × Ra−1/3 in our two-
dimensional parameter space (Ra, Γ ). The exact values of the parameters are listed
in table 1.

We start our discussion with an analysis of the profiles of the mean temperature
Θ(z), the r.m.s. temperature fluctuation σ (z), the skewness s(z) and the kurtosis k(z).
Before we turn to a comparison of the temperature fields for different values of Γ ,
we will analyse the most interesting case, that of minimum aspect ratio Γ = 1.13 and
maximum Rayleigh number Ra = 7.69 × 1011. From previous measurements and from
theoretical predictions a laminar boundary layer with a linear temperature profile was
expected, but the measurements gave quite different results.
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Ra Γ ϑ̄HP (◦C) ϑ̄B (◦C) ϑ̄CP(◦C)

8.14 × 108 11.3 62.95 42.71 20.06
1.67 × 109 8.83 62.64 41.68 20.08
3.54 × 109 6.81 62.64 40.80 20.08
7.56 × 109 5.26 62.78 40.28 20.08
1.66 × 1010 4.06 63.18 40.62 20.07
3.53 × 1010 3.15 62.78 40.36 20.08
7.66 × 1010 2.45 63.08 40.95 20.08
1.69 × 1011 1.89 62.86 41.23 20.06
3.66 × 1011 1.47 63.61 41.68 20.07
7.69 × 1011 1.13 65.00 40.82 20.07

Table 1. Set of parameters for the variable-aspect-ratio measurement series.
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Both the mean-temperature profile and the profile of the r.m.s. temperature
fluctuation are plotted in figure 6(a) versus the normalized distance z/H . At first
glance they do not differ from previous measurements. The temperature Θ(z) and
the fluctuations σ (z) rise very quickly in a thin layer below the plate. While the
temperature tends to the bulk temperature, the fluctuation first attains a maximum
and then decreases with increasing distance from the cooling plate. However, looking
more carefully at the immediate vicinity of the plate (figure 6b), two remarkable
differences from previous temperature measurements become visible.
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Although our measurements probe the thermal boundary layer with much higher
spatial resolution than that in previous RB experiments, our mean temperature does
not converge exactly toward the temperature of the cooling plate as z → 0. This can
be inferred from the fact that the extrapolation of the curve Θ(z) in figure 6(b) to z =0
crosses the vertical axis at Θ > 0 rather than Θ =0. This effect, which does not occur
for lower Rayleigh numbers (cf. § 4 below) and which was not noticed in previous
investigations owing to limited spatial resolution, is a consequence of the finite size
of our sensor and its interaction with the mean flow and the cooling plate. Indeed,
when the distance between the sensor and the cooling plate becomes comparable
with the size of the sensor (which certainly is the case for z < 0.6 mm (z/H < 10−4)),
its presence distorts the flow. This leads to a stagnant zone between the sensor and
the plate, associated with a low heat-transfer coefficient, and to an accelerated flow
on the opposite side of the sensor, associated with a high heat-transfer coefficient.
Such asymmetry in the thermal boundary conditions at the sensor results in a vertical
heat flux through the sensor, whose thermal conductivity is much higher than that of
air, and gives rise to a higher apparent temperature. Notice that even in its closest
position to the cooling plate the sensor is surrounded by a strong velocity gradient,
whose value was estimated from preliminary laser-Doppler velocimetry measurements
as dU/dz ≈ 240 s−1. Additional errors due to radiative heat transfer from the sensor
to the cooling plate are possible. However, this effect should have the opposite sign.

The second remarkable observation is the virtual absence of a linear part in the
mean temperature profile. This observation is in contrast with previous temperature
measurements at lower Rayleigh number, such as those of Deardorff & Willis (1967)
and Townsend (1958) in air for Ra < 107 and those of Belmonte et al. (1994) in high-
pressure gases for Ra = 3.5 × 109. In the latter experiment the linear part of the profile
extended down to z/H = 0.003, but this part was covered by only five measurement
points. Up to now, direct numerical simulations have not been capable of reliably
predicting the details of the temperature profiles near the plates for the Rayleigh
numbers of our experiment. In our mean-temperature profile (figure 6a) only a small
layer up to z/h ≈ 6 × 10−5 (z = 0.37 mm) shows a linear dependence. A curvature is
already noticeable when Θ(z) reaches 30 % of its bulk value. Invoking the results of
preliminary mean-velocity measurements, we can identify the linear part as the small
viscous (laminar) sublayer. The tangent to this part of the mean-temperature profile
defines the thickness of the thermal boundary layer δΘ , as shown in figure 6(b).
Belmonte et al.’s hypothesis that δΘ = δσ , where δσ is the point of maximum r.m.s.
temperature fluctuation, is not confirmed by our measurements, as seen in figure 6(b).
Over the large range between z/H = 5 × 10−5 (z = 0.32 mm) and z/H =8 × 10−4

(z = 5.04 mm) we found that the scaling of the mean temperature with distance can
be fitted very well by the power law

Θ(z) = C(z/H )α, C = 31.56, α = 0.5265. (3.1)

This region is limited from below by the viscous sublayer and from above by the edge
of the thermal boundary layer. The behaviour of the mean-temperature profile corres-
ponds to the theories of Prandtl, Priestley and Malkus but the exponent differs from
the predicted values. The plot of the mean-temperature profile in a semilogarithmic
scaling, shown as an inset in figure 6(c), demonstrates that there is no pronounced log-
arithmic behaviour. The exponents involving the other parameters are listed in table 2.

Another often-examined aspect is the decay of the r.m.s. temperature fluctuation σ

after it has reached its maximum. A number of predictions ranging from a power-law
behaviour with exponents between β = −1/3 and β = −1/2 (see (1.6) (Priestley 1954;
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Γ α β σmax δΘ (mm) δσ (mm) δs (mm) Nu

1.13 0.527 −0.425 0.127 3.29 6.67 3.32 587
1.47 0.473 −0.387 0.122 2.85 6.87 2.93 436
1.89 0.484 −0.323 0.131 3.08 6.28 3.60 339
2.45 0.469 −0.324 0.132 3.17 6.22 3.58 269
3.15 0.530 −0.305 0.135 3.13 6.22 3.42 221
4.06 0.497 −0.320 0.135 3.00 5.70 3.31 172
5.26 0.512 −0.302 0.138 3.09 5.71 3.57 137
6.61 0.538 −0.324 0.147 3.12 5.69 3.35 103
8.83 0.550 −0.367 0.148 2.92 4.85 3.19 77
11.3 0.551 −0.370 0.153 2.85 4.67 2.97 58

Table 2. Measurement data for the variable-aspect-ratio series.

Castaing et al. 1989) to a logarithmic scaling (Fernandes & Adrian 2002) exist and our
measurements add an additional piece to this puzzle. Our data can be described by a
power law too but the exponent varies in the range −0.302 >β > −0.425 depending
on the aspect ratio Γ , the lowest value being measured at the lowest Γ .

Having discussed the profiles of mean temperature and temperature fluctuation we
now turn to the profiles of the higher-order moments, namely the skewness s(z) and
the kurtosis k(z), plotted in figure 6(d).

The measured skewness profile is characterized by two regions. In the first, ranging
from z/H = 0 (z = 0 mm) to z/H =5 × 10−4 (z =3.2 mm), the skewness is small but
weakly positive. This is a consequence of the fact that the temperature is bounded from
below by Θmin =0. The symmetrical distribution of the temperature fluctuations inside
this region indicates that cold fluctuations from the cooling plate and hot fluctuations
from the bulk are balanced. In the second region, from z/H =5.0 × 10−4 (z = 3.2mm)
up to the maximum measurement distance z/H = 2.4 × 10−2 (z =150 mm), the
skewness drops, intersect the x-axis and seems to move towards an asymptotic value
of s = −2 far away from the plate. This observation agrees with measurements of
Castaing et al. (1989), who found that the temperature samples in the bulk are
distributed exponentially in the hard turbulent regime (Ra > 108).

In the kurtosis profile the sharp difference between the boundary layer and the bulk
region is reflected as well. In the boundary layer the temperature samples are close to
the Gaussian distribution (k =3). After a small drop to values k < 3 the kurtosis rises
to a value k > 6. Because of the limited maximum-measurement distance, z < 150 mm,
a general statement about the behaviour in the bulk region cannot be made.

In figure 7 the values of δΘ and δσ may be compared as functions of the aspect
ratio; the first quantity is defined by the slope of the mean temperature at z = 0 and
the second quantity is based on the z-position of the maximum r.m.s. temperature
fluctuation. Between its lowest and highest values the thickness δΘ varies only by
about 0.4 mm, which is about 10 % and inside the measurement and calculation
error. In contrast with this observation, δσ depends on the aspect ratio. Surprisingly,
the z-position does not change continuously with the aspect ratio; rather we found
different bands in which the boundary-layer thickness remains nearly constant. The
results are summarized in table 2.

Obviously the boundary-layer thickness δσ is more influenced by the global flow
structure than by the boundary-layer conditions. As we know, a large single roll
exists at Γ = 1.13 and we assume that a transition to other modes occurs for higher
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Figure 7. Boundary-layer thicknesses for variable aspect ratio as obtained from the slope of
the mean temperature Θ near z = 0 (δΘ , solid circles) and from the location of the maximum
of the r.m.s. temperature fluctuation (δσ , crosses). The exact values of the data are given in
table 2.

Γ . For example, during preliminary flow visualization at Γ =2 we observed a flow
change from one large single roll to a double-roll structure and back again. This fact
corresponds with the first transition of δσ between Γ = 1.47 and Γ = 1.89 (table 2).
Increasing Γ again, a second change between Γ = 3.15 and Γ = 4.06 and a third one
between Γ = 6.61 and Γ = 8.83 occurred. Niemela & Sreenivasan (2005) reported
experiments in an RB cell with Γ = 4 for Ra = 6.5 × 1011: they found that the mean
circulation vanishes for aspect ratios larger than unity. Presently we do not know
enough about how the geometry influences the global flow structure and how to
interpret the effects mentioned above. Some clarification of this issue can be expected
from ongoing local and global measurements of the velocity field and from global-flow
visualization.

The next interesting issue especially regarding the heat transport is to compare the
shapes of the mean-temperature profiles. If the relation Nu ∼ Ra1/3 is true then both
the heat flux Q̇K and the thickness of the boundary layer δΘ should be independent
of the distance between the heating and cooling plates. We plot four examples of the
mean-temperature profile scaled by δΘ in figure 8(a). From the lowest aspect ratio,
Γ = 1.13 (Ra = 7.7 × 1011), up to the highest, Γ = 11.3 (Ra = 8.1 × 108), (cf. figure 7),
no significant difference between the profiles can be discerned. Both the slope of the
profile and the boundary-layer thickness δΘ depend on the aspect ratio only weakly.

A comparison of the corresponding profiles of the temperature fluctuation σ

(figure 8b) confirms the weak dependence of the boundary-layer structure. Only
the values of the maximum fluctuation σmax differ slightly (table 2). The highest
value was measured at Γ = 11.3 (Ra = 8.1 × 108), which is perhaps an indication of
a more unstable and irregular flow at large aspect ratios. In figures 8(c), (d) the
skewness and kurtosis profiles, respectively, are shown. Inside the boundary layer
the temperature samples are distributed almost normally around the mean and also
remain unchanged for the parameter range investigated. All the skewness profiles,
and the kurtosis profiles as well, coincide inside the boundary layer. The skewness
intersects the x-axis at z/δΘ ≈ 1, indicating the association of this value with the
boundary-layer thickness δΘ . With increasing distance from the cooling plate the
profiles spread. For the smallest aspect ratio, Γ =1.13 (Ra =7.7 × 1011), they decrease
logarithmically (see the inset in figure 8c) and approach s = −2. This value coincides
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Figure 8. The thermal boundary layer for variable aspect ratio. (a) Profiles of the mean
temperature, (b) the r.m.s. temperature fluctuations, (c) the skewness and (d) the kurtosis for
aspect ratios Γ = 1.13 (solid circles), Γ = 2.45 (empty circles), Γ = 5.26 (solid triangles) and
Γ = 11.3 (empty triangles). The insets show the profiles in the immediate vicinity of the cooling
plate.

with the measurements of Castaing et al. (1989) in the hard turbulent regime. The
other profiles at higher aspect ratios do not show a clear trend. As far as we can assess
it, the skewness tends to −1 at the maximum measurement distance, corresponding
to a distribution of the temperature samples somewhere between the normal and
the exponential one. A similar behaviour can be observed in the kurtosis profiles
(figure 8d). They collapse inside the boundary layer but spread outside it. A clear
tendency cannot be detected. The profiles for the higher aspect ratios seem to
approximate values lower than k = 6 with increasing distance from the cooling plate.
Only the profile at Γ = 1.13 exceeds k = 6, with a relatively steep gradient. Possibly
it reaches k = 9 inside the bulk (k = 9 is the characteristic value for exponentially
distributed samples), but in fact we were not able to measure it.

4. Results for constant aspect ratio
In this section we set the aspect ratio to its lowest possible value, Γ = 1.13, and focus

our interest on the second question outlined in the introduction: does a variation in
the structure of the thermal boundary layer exist in RB convection at high Rayleigh
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Ra ϑ̄HP (◦C) ϑ̄B (◦C) ϑ̄CP(◦C)

1.09 × 1011 24.00 22.23 20.00
1.42 × 1011 25.70 22.95 20.01
1.86 × 1011 27.50 23.92 20.01
2.48 × 1011 31.25 25.33 20.01
3.36 × 1011 34.40 27.46 20.02
4.19 × 1011 38.90 29.65 20.04
5.42 × 1011 45.70 33.15 20.03
6.37 × 1011 52.20 36.18 20.05
7.69 × 1011 65.00 40.82 20.07
8.59 × 1011 70.00 44.62 20.07
9.80 × 1011 80.40 47.87 18.60

Table 3. Set of parameters for the constant-aspect-ratio, Γ = 1.13, measurement series.

Ra α β σmax δΘ (mm) δσ (mm) δs (mm) Nu ηeff

1.09 × 1011 0.758 −0.441 0.145 5.99 16.03 7.91 293 0.6075
1.42 × 1011 0.626 −0.464 0.146 5.12 13.75 7.29 346 0.3537
1.86 × 1011 0.583 −0.470 0.145 4.79 12.26 6.31 355 0.1627
2.48 × 1011 0.542 −0.441 0.139 4.94 10.20 5.60 380 0.2817
3.36 × 1011 0.544 −0.455 0.138 4.54 9.68 4.71 419 0.3298
4.19 × 1011 0.535 −0.439 0.135 4.05 8.89 4.32 448 0.2979
5.42 × 1011 0.523 −0.433 0.131 3.84 8.26 4.00 484 0.3213
6.37 × 1011 0.517 −0.418 0.128 3.63 7.89 3.86 513 0.5331
7.69 × 1011 0.526 −0.425 0.124 3.29 6.77 3.31 585 0.5480
8.59 × 1011 0.496 −0.420 0.124 3.38 6.48 3.36 601 0.5169
9.80 × 1011 0.481 −0.426 0.117 3.09 6.26 3.24 658 0.6984

Table 4. Measurement data for the constant-aspect-ratio, Γ = 1.13, series.

numbers? Particularly, we relate our measurements to the question whether first
signatures for the transition to an ‘ultimate regime’ can already be observed at a lower
Rayleigh number than that predicted by Kraichnan (1962) and Grossmann & Lohse
(2000). Inspired by the different results of both the Grenoble experiment (Chavanne
et al. 1997) and the Oregon experiment (Niemela et al. 2000), we conducted a series
of heat-flow and temperature-profile measurements at constant aspect ratio, Γ = 1.13,
and varying temperature differences in the range 1011 <Ra < 1012. The complete set
of parameters is shown in table 3 and the results are summarized in table 4. It should
be noted at this point that the bulk temperature could not be kept constant during
all the measurement series and the results at the highest three Rayleigh numbers at
least might have been influenced by non-Boussinesq effects.

As shown in figure 11 below, the effective exponent ηeff in the relationship between
Ra and Nu does indeed increase from ηeff ≈ 1/3 for lower Ra (except for the lowest Ra
at which the errors are very high) to a significantly higher value for Ra > 7 × 1011. In
order to check a possible transition to a turbulent boundary layer we first compared
all profiles of the mean temperature Θ and plotted them for three selected Rayleigh
numbers, Ra =1.1 × 1011, Ra = 3.4 × 1011 and Ra = 9.8 × 1011. Because the height
(and thereby the aspect ratio) was maintained constant, the distance z is normalized
by the height of the RB cell, H , and is plotted as a function of z/H . In the doubly
logarithmic representation in figure 9(a) the curve of the mean-temperature profile at
the lowest Rayleigh number, Ra ≈ 1011, starts exactly from the origin of the surface
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Figure 9. Profiles at constant aspect ratio. (a) The mean temperature, (b) the r.m.s.
temperature fluctuation, (c) the skewness and (d) the kurtosis for Ra = 1.09 × 1011 (crosses),
Ra = 3.36 × 1011 (empty circles) and Ra = 9.8 × 1011 (solid circles); Γ = 1.13. The insets show
the behaviour of the profiles in the immediate vicinity of the cooling plate.

temperature (i.e. Θ(0) = 0) and with a linear dependence of Θ on z (corresponding
to a slope close to unity in the doubly logarithmic inset of figure 9a); the profile
at the highest Rayleigh number, Ra ≈ 1012, starts at a temperature Θ(0) �= 0 that
is noticeably above the surface temperature and with a smaller slope. Further away
from the wall, the profiles differ again but approach the asymptotic value Θ = 1
far away from the boundary layer. These effects could be first indications of the
transition from a laminar boundary layer, existing only at a very low temperature
difference, towards another type. However, the logarithmic mean-temperature profile
characterizing a turbulent boundary layer is missing again.

The absence of any transition is also reflected in the profiles of the r.m.s. temperature
fluctuation σ (z) shown in figure 9(b), the skewness s(z) (figure 9c) and the kurtosis
k(z) (figure 9d). With increasing Ra the maximum of σ decreases and its position
moves towards the plate. Furthermore, the profile of σ in the vicinity of the cooling
plate seems to evolve from a near-linear one at Ra =1011 to an increasingly nonlinear
one as Ra rises. This is clearly seen in the inset in figure 9(b).

The change in the skewness profile can be observed particularly well in the
modification of δs . This point, where positive and negative fluctuations are balanced,
moves towards the plate. All profiles coincide at the maximum distance from the
plate with the value s = −1.5. Regarding the profiles of the kurtosis the picture is
similar. Both the first and the second intersection point of the profile are shifted
toward the cooling plate with increasing Ra . Further into the bulk all profiles seem
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to approach the same value, k > 6, indicating an exponential distribution of the
temperature samples and characterizing the hard turbulent regime, as proposed by
Castaing et al. (1989).

Summarizing the appearance of the profiles in figure 9, it can be stated that all
characteristic length scales in the thermal boundary layer continuously decrease with
increasing Ra , as expected. In particular, no indications for a sudden transition in the
structure of the boundary layer are visible. A more systematic study of the evolution
of the profiles, by investigation of the dependence of the characteristic parameters
(listed in table 4) on Ra , is possible.

Let us continue by discussing the boundary-layer thickness δΘ as a function of Ra,
as shown in figure 10(a). In contrast with the first series of experiments where δΘ does
not depend on the aspect ratio or on the Rayleigh number, respectively (§ 3), here it
drops weakly with increasing Ra when the temperature difference between the plates
is varied while the aspect ratio is kept constant. The dependence can be described by
a power law:

δΘ = C1Raµ1, µ1 = −0.2540. (4.1)

Next we consider the boundary-layer thickness based on the position of the
maximum temperature fluctuations, δσ (figure 10a). It drops even faster, to a value
of approximately one-third of its maximum value, and also clearly scales with Ra in
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the form of a power law:

δσ = C2Raµ2, C2 = 4.507 × 105, µ2 = −0.4051. (4.2)

Obviously the two exponents µ1 and µ2 differ strongly. This difference was already
observed in our first series of measurements and clearly contradicts the hypothesis of
Belmonte et al. (1994) according to which δΘ = δσ .

The dependence of δs on Ra , where δs denotes the z-position of vanishing skewness,
is similar to that of δσ and can be also approximated by a power law:

δs = C3Raµ3, C3 = 3.684 × 105, µ3 = −0.4229. (4.3)

Although the second intersection point δk of the kurtosis profile also moves towards
the plate with increasing Ra its dependence is much weaker than the dependence of
the points discussed before (figure 10b). Nevertheless, again we express it by a power
law:

δk = C4Raµ4, C4 = 2.001 × 103, µ4 = −0.1779. (4.4)

Here the coefficient C4 and the exponent µ4 are clearly reduced in comparison with
the values in the equations above, (4.2), (4.3). Up to this point we can conclude that
the thickness and the structure of the boundary layer in the centre of the cooling
plate change continuously in the parameter range investigated. Just as stated in the
discussion of the temperature profiles, the indication of a clear transition of the
boundary layer structure is missing, though we obtained evidence of a transition in
the convective heat transfer (see the appendix). Apparently the observed rise in the
exponent of the global heat transfer is caused by non-Boussinesq effects or a variation
in the properties of the fluid.

In order to check this hypothesis, finally we studied σmax = σ (δσ ) as a function of
Ra (figure 10c). Below Ra = 3 × 1011 it remains nearly constant at σmax =0.145 while
above this value it starts to drop. The point of the transition roughly coincides with
the change in the exponent in the Nu(Ra) power law. But since σmax is related to the
global flow structure rather than to the structure of the boundary layer we cannot
regard this fact as evidence for a new regime of the turbulent heat transport.

5. Conclusions
In this work, high-resolution local-temperature measurements in a large-scale RB

experiment, the ‘Barrel of Ilmenau’, have been presented. Particular attention has
been focused on the thickness and structure of the thermal boundary layer at the
cooling plate and their influence on the global heat transfer. For Rayleigh numbers
up to 1012 we measured highly resolved temperature profiles along the central axis of
the RB cell and analysed the statistics.

Two series of experiments were carried out, in each of which only a single parameter
was varied. In the first series the aspect ratio was changed while the temperature
difference and all other parameters were kept fixed. The measured temperature profiles
Θ(z) in the boundary layer obey a power law with an exponent α ≈ 1/2 that is virtually
independent of Γ and Ra . The r.m.s. temperature fluctuation σ is found to decay
with increasing distance z from the boundary, according to σ (z) ∼ zβ; the value of
β is in the range −0.42 <β < −0.30 and depends both on Ra and Γ . The skewness
and kurtosis behave self-similarly in this parameter range. According to the Priestley
theory, the global heat flux through the RB cell does not depend on the aspect ratio.
It was confirmed by examination of the temperature profiles in the centre of the
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cooling plate that both the structure and the thickness of the thermal boundary layer
remain nearly unchanged.

In the second series of experiments, covering a range of Ra between 1011 and
1012 the aspect ratio was maintained constant and the temperature difference was
varied from �ϑ = 4 K to �ϑ = 62 K. For the lowest temperature difference the mean
temperature grows nearly linear with the distance from the cooling plate while for the
other cases the profile can be described best by a simple power law. Furthermore it
can be stated that a transition of the boundary layer from the laminar to the turbulent
type up to Ra =1012 could not be verified despite the fact that the effective exponent
in the Nu–Ra relation increases. This result is in a good agreement with theoretical
predictions of Kraichnan (1962) and Grossmann & Lohse (2000) and the numerical
simulations of Amati et al. (2005). Moreover we associate the effect of the enhanced
heat transfer in the investigated parameter range with non-Boussinesq effects, with
a variation in the fluid properties or potentially with a transition in the global flow
structure.

The authors wish to acknowledge the financial support of the Deutsche Fors-
chungsgemeinschaft under grant numbers TH 497/16-1 and 497/16-2 and that of the
Thüringer Ministerium für Wissenschaft, Forschung und Kunst for the work reported
in this paper. We thank G. Ahlers for useful discussions and V. Mitschunas and H.
Hoppe for technical help.

Appendix. Heat transfer
One of the most frequently discussed questions in Rayleigh–Bénard convection

concerns the heat transfer through the cell in the highly turbulent regime and its
dependence on Ra and Γ . In spite of the fact that our apparatus was not particularly
well suited for high-accuracy measurements of the Nusselt number, owing to non-
uniformities at the heating plate (see figure 2), we were also interested in this issue
and we now address two related questions of particularly interest, as follows.

(i) How does the dimensionless heat transfer Nu depend on the plate distance and
on the aspect ratio?

(ii) Can a transition be observed in the exponent of the Nu(Ra) relation at Rayleigh
numbers up to 1012, as reported from the Grenoble Group in Chavanne et al. (2001)?

In order to answer the first question we compute the Nusselt number from the first
series of experiments, where the temperature difference between the heating and the
cooling plate was maintained constant at �T = 40 K and the aspect ratio was varied
between Γ =1.13 and Γ = 11.3. Here the Nusselt number is written as the ratio of
the measured total convective heat flow Q̇K and the diffusive heat flow Q̇D between
both plates:

Nu =
Q̇K

Q̇D

=
HQ̇K

2λA(ϑ̄B − ϑ̄CP)
, (A 1)

where λ is the heat conductivity of the air and A denotes the surface area of the
cooling plate. Analogously to Ra, Nu is calculated from twice the difference between
the bulk temperature ϑ̄B and the mean temperature of the cooling plate ϑ̄CP. The
convective heat flow Q̇K is calculated from the measured electrical heating power P ,
taking into account the heat flow into the ground Q̇G and the radiation exchange
between the heating and the cooling plate Q̇R:

Q̇K = PEL − Q̇G − Q̇R. (A 2)
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Figure 11. The heat transport for variable (left) and constant (right) aspect ratio: the global
Nusselt number Nu as obtained from the total heat flux measurements, (A 1), represented in
uncompensated (empty circles) and compensated (solid circles) forms.

The electrical heating power was measured by a power meter PM390 with a maximum
error of 0.3 %. The heat flow into the ground was computed from a single local-heat-
flux measurement in the thermal insulation layer below the heating plate. Owing to
the large diameter of the heating plate in comparison with the thickness of the bottom
insulation layer, the heat flux into the ground deviates from its mean value only at
the edge. Numerical simulations confirmed the correctness of this assumption. The
radiation exchange Q̇R between the plates is determined from a model of two parallel
concentric discs with the same diameter D and the distance H as

Q̇R =
σεε

2A

1 − (1 − ε)2Φ12

(
T 4

HP − T 4
CP

)
(A 3)

with the view factor

Φ12 =
1 + 2R2 −

√
1 + 4R2

2R2
, R =

Γ

2
. (A 4)

Here σε denotes the Stefan–Boltzmann constant and ε is the emissivity of the surface.
The last quantity is measured for ε < 0.1 at several positions of the plates, and so we
used this upper limit for all calculations. Since the radiative heat flux between the
plates does not exceed 125 W, uncertainties in its calculation are a minor source of
error.

In the left-hand diagram in figure 11 the Nusselt number Nu and its value
normalized by the reciprocal of Γ are shown for the variable-aspect-ratio series.
With only small deviations the dimensionless heat flow can be fitted by the function

Nu = CΓ η, C = 655, η = −0.9770, (A 5)

which gives η as very close to − 1. Recomputed into a Nu(Ra) power law, (A5)
yields Nu ∼ Raξ with ξ = 0.3257 and confirms that in the highly turbulent regime
also the heat flow through the RB cell depends only very weakly on the distance
between the plates in the case of a constant temperature difference. Furthermore we
compared our results with the widely accepted theory of Grossmann & Lohse (2000)
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and found surprisingly good agreement with the predicted value of ξtheor = 0.323 in
the investigated range of Ra .

For the second series of experiments, where Γ was kept fixed and �T was varied, Nu
and Nu/Ra1/3 are plotted versus Ra in the right-hand part of figure 11. As observed in
the low-temperature helium experiments of the Grenoble group, a significant change
in the slope of the Nu(Ra) relation exists for Ra > 7 × 1011. This becomes clearer in
the compensated plot, where Nu is plotted versus Ra1/3. However, because of the
unambiguous statement of the unchanged structure of the boundary layer (see § 4) a
correlation between this observation and the transition of the turbulent flow towards
the ultimate regime can be ruled out. In the interpretation of the increasing exponent
in the Nu(Ra) relation we follow Niemela & Sreenivasan (2005), who associated it with
non-Boussinesq effects caused by the large temperature difference �T > 32.2 K for
the corresponding range of Ra . At present we cannot answer this question definitely,
but it will be addressed in our future work.
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